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Abstract-The flowfield, heat transfer and the resulting melting rate of a solid body immersed in an 
otherwise quiescent, hot fluid are considered. The problem is an interesting example of free convection, 
differing from the usual free convection problems in that the dominant buoyancy force is due to the flu& 
melt density difference rather than the familiar thermal expansion, An asymptotic solution is obtained in 
analytical form for the limiting case of negligible thermal buoyancy effect, negligible mixing between the 
melt and the ambient fluid, large ambient fluid Prandtl number and small Stephan number cp AT/d,. The 
neglected parameters are shown to be small for common fluid combinations. The theory is also applicable to 
miscible fluids with large Lewis numbers. A qualitative and semi-quantitative comparison with experimental 

results is given. 

1. INTRODUCTION 

THE MELTING of a solid body immersed in an otherwise 
quiescent, hot fluid different from its own molten or 
sublimed phase constitutes an interesting sub-class of 
the phenomenon of free convection. After a short 
transient, the melting rate is mediated by the quasi- 
steady, natural convective motion of the melt and the 
ambient fluid. As a rule, the density difference between 
the melt and the ambient fluid is greater than that due 
to thermal expansion. Consequently, the buoyancy 
force responsible for the motion of the melt layer 
derives primarily from differences in material densities 
rather than from thermal gradients in the fluid. 

Many examples of this problem can be found. The 
melting of ice in saline water and in alcoholic drinks 
and the melting of wax and butter in hot water come 
to mind. The sublimation of dry ice in air is another 
example. It can be expected that the problem may also 
arise in metallurgical and chemical processing. Recent 
interest, however, has been spurred by considerations 
of the integrity of structures when immersed in molten 
core material after a hypothetical reactor accident. 
For example, one problem which has received con- 
siderable attention is the heat transfer from a pool 
of heat generating molten core debris (see review by 
Glueckler and Baker [I]). Experimental studies on the 
rate of enlargement of an internally heated. molten 
pool were conducted by Farhadieh and Baker [2]. The 
result does not appear to correlate with free con- 
vection heat transfer rates based on thermal buoyancy 
considerations for non-melting pools. This indicates 
that the density difference between the pool and the 
melt layer might have played a dominant role in con- 
trolling the heat transfer process. 

A question which comes to mind immediately is 
whether a distinction needs to be made between mis- 
cible and immiscible fluid combinations. There are 

two facets to this question. First, for immiscible fluids, 
surface tension would be present. However, for 
sufficiently large bodies, surface tension will play only 
a small role in the motion of the fluids. Secondly. for 
miscible fluids, the composition distribution in the 
boundary layer must be considered. It can be expected 
that for large Lewis number (= Sc/Pr), the mass 
diffusivity is much lower than the heat diffusivity. 
Relatively abrupt composition variations will be 
found within the thermal boundary layer. This would 
be the case for most liquid combinations and some gas 
combinations. For these materials, the thin diffusional 
boundary layers should not significantly affect the 
nature of the problem. 

The present communication is concerned with the 
basic prototype of such a melting problem. The for- 
mulation is carried out for a nearly vertical melting 
surface for a solid whose molten phase is not miscible 
with the surrounding fluid. The results should be 
approximately applicable to miscible fluids with large 
Schmidt numbers. A closed form solution is provided 
for the limiting case of large Prandtl numbers and 
small Stephan numbers. 

2. GOVERNING EQUATIONS 

We adopt the usual practice in boundary-layer 
analysis in designating .Y as the coordinate along the 
solid-fluid interface and y the coordinate normal to 
the interface (see Fig. 1). Since the solid boundary 
is gradually receding, the coordinate system is time 
dependent. However, in the limit of slow melting rate. 
the process can be considered quasi-steady. The 
governing equations for incompressible fluids are: 
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NOMENCLATURE 

.; 

specific heat r abbreviation forf”(q,). dimensionless 

similarity variable for streamfunction $ velocity of the ambient fluid-melt interface 

_ thermal conductivity P density 

S modified Stephan number, see equation Ap density difference between the melt and 

(34) the ambient fluid 

T temperature t abbreviation for ‘1, (an indication of 

u, I’ velocity components along s and _r. melt layer thickness) 

respectively * streamfunction. 

V melting rate (in velocity unit) 
.Y,J’ coordinates (see Fig. I). Subscripts 

a ambient fluid 

Greek symbols C see 2, 

x heat diffusivity i interface between the ambient fluid and 

1 angle of inclination (see Fig. 1) the melt 

i abbreviation for O(q,). dimensionless m melt layer 

temperature of the ambient fluid-melt ms melt-solid interface (same as sm) 

interface S solid 

‘1 similarity variable for J’, see equation sm solid-melt interface (same as ms) 

(17) X at_), = 8~. 

(1 dimensionless temperature 
i latent heat of fusion Superscripts 

AC effective latent heat including sensible * stretched variables based on external 

heat contribution, see equation (14) viscous boundary-layer scaling 

P viscosity + stretched variables based on external 

I’ kinematic viscosity thermal boundary-layer scaling. 

(2) 
ary conditions are : 

(3) 

T+T,,. u+O as>l+ra (4) 

T = T,,,,, u = 0. L’ = fi V(.u)at J’ = 0 (5) 
Pm 

These equations govern both the melt layer and the where T,,,, is the melting point and V(s). the melting 
boundary layer in the hot ambient fluid. The bound- 

Hot 

Ambieni 

FluId 

FIG. 1. Schematic representation of an immersed solid with 
an exposed. nearly vertical surface, showing the coordinate 

system employed. 

rate, is an unknown. The coupling between V(X) and 
the temperature distribution will be discussed later. It 
is convenient to solve equations (I)-( 3) separately for 
the two fluid layers assuming constant properties for 
each layer and matching the two solutions at the inter- 
face. The matching conditions for the tangential vel- 
ocity, u, normal velocity, LT. and temperature, T. are : 

7-w = T,, 

k aT,=,aT, Y=6,, Va, b) 
m ay ay 

where the subscript m denotes the melt layer and the 
subscript a denotes the thermal boundary layer of the 
ambient fluid. Note that an additional condition 1’ = 0 
is incorporated with equation (6b). The problem is 
not overspecified since 6, is unknown. 
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The coupling between the velocity and heat transfer 
boundary conditions at the melting boundary is pro- 

vided by consideration of heat conduction in the solid. 
Consistent with the boundary-layer assumption 
employed for the fluid layers, we may neglect the axial 
conduction in the solid. Thus the energy equation for 
the solid is : 

with boundary conditions 

T, = T,, at y = 0 

T, + T,, as y-t -co. 

The solution is 

(9) 

(10) 

(T,- T,,) = (T,,-T,,)evy’“~ (11) 

where CL denotes the heat diffusivity. 
From the jump condition for the temperature gradi- 

ent at the solid-melt interface 

k,!T-=p,Vk+ks aty=O 
& s ay (12) 

it follows that 

k,% = &V1, = p&J, aty=O (13) 

where I, is an abbreviation, representing an effective 
latent heat defined as 

I, = l+c,(T,,-T,,). (14) 

Equation (13) together with equation (5) serves as 
the coupling between the velocity and heat transfer 
boundary conditions. 

3. SIMILARITY TRANSFORMATION 

We shall assume that 

Accordingly, 

y < 1. (15) 

cos y = 1+ O(y2). (16) 

Thus, although x is measured along the surface of 
the melting solid, which may not necessarily form a 
vertical surface, it is possible to replace cos y by unity 
with only second-order error. The governing equa- 
tions will thus admit a similarity solution just as a 
vertical surface. 

We introduce the similarity variable 

x-“4Y (17) 

and the dimensionless temperature and stream- 
function 0 and f 

T- Ts, 
WI) = AT (18) 

where $ is the streamfunction and AT denotes 

T, z - T,,, the temperature difference between the 
undisturbed ambient fluid and the solid melting point. 

The momentum and the energy equations are then 
reduced to the ordinary differential equations 

For the melt layer: 

w; = -$f,0:, 

For the boundary layer in the ambientjuid: 

where primes denote differentiation with q. Pr, and 
Pr, are the Prandtl number for the two materials. S 
denotes the modified Stephan number defined as 

S = c,(T,, - TJ&. 

The boundary conditions are 

(24) 

Q,(O) = 0, f,(O) = -(3/4)K(O), f 6(O) = 0, 

B,(m) = 1, f:(m) = 0. (25a-e) 

The matching conditions at the interface Y) = q, are 

Q&I,) = R&L) [= t+L)l (26a) 

UK(;r?) = ,%JM;r?,) (26b) 

“L(Q) = .f,(?,) = 0 [ =f 0731 (26~) 

.mJ =fXv,) (264 

PJhJ = Ilmfm(%). We) 

Note that the extra condition contained in equation 

(26~) is to be employed to determine the unknown 
interface position, q,. 

Two observations can be made from an examin- 
ation of equations (20)-(25) : 

1. The equations for the melt layer can be immedi- 
ately decoupled from those of the external bound- 
ary layer if the interfacial temperature 0(~,) and 
the interfacial tangential velocity f '(q,) are known. 
Once decoupled, these equations can be solved by 
conventional procedures. 

2. Although the equations are not overly difficult, 
there are a large number of parameters-four in 
the differential equations and two in the boundary 
conditions. Therefore, while exact solutions are 
clearly possible for these coupled ordinary differen- 
tial equations, the results are expected to be at best 
clumsy and at worst confusing. 
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Accordingly, we shall proceed to examine some 
limiting conditions for which the differential equa- 
tions can be significantly simplified. Our procedure 
will be: (1) to obtain solutions of the decoupled differ- 
ential equations in terms of three quantities Q, O(t),) 
and f’(q); (2) to express g, and f’(qi) in terms of 
t&q,) ; and (3) to solve for @(q,) algebraically. For con- 
venience, these three parameters will be denoted as 

q, = z (reduced melt layer thickness) (27a) 

f3(~,) = [(a-m interface temperature) (2%) 

Y(Q) = 5 (a-m interfacevelocity). (27~) 

L~rnit~~g form as Pr, --+ CcI 
Note that our definition of the dimensionless para- 

meters are based on melt layer scaling. The structure 
of the boundary layer in the ambient fluid can be 
clarified if the momentum equation, equation (22) is 
transformed to stretched variables according to its 
own scaling. The new variables are 

and 

(28b) 

We may call this scaling the external viscous scale. 
The transformed equation is 

order unity. The shear stress matching condition for 
the interface thus becomes 

f’“’ __$f*Gi’_jsf*f*‘r (29) 

with boundary conditions 

,f*(O) = 0. f*(O) = 1 and .f*‘tm) = 0 (3Oa-c) 

where primes denote differentiation with respect to 
the stretched variable TV*. Note that equations (29) 
and (30) uniquely define a valuef*“(O) which is of the 

WW 

the transformed equation is 

@+‘I = _if +e+t (34) 

with boundary conditions 

@+(c0) = I, e+(o) = 0. (35a, b) 

By comparing equation (28a) with (33a), the ratio 
of the thermal scale over the viscous scale can be 
found to be Pp.; jfz. In other words, for large Pr,, the 
viscous scale length and viscous boundary-layer thick- 
ness greatly exceed the thermal scale length and ther- 
mal boundary thickness. Thus, the velocityf’(q) can 
be considered essentially uniform within the thermal 
boundary layer. From equation (27~) 

-f“(V) + ;. f‘+(rl+) + 1, f(e) -+@% f” +?+ 

for 0 <: v+ < O(1) as Pr,--* c0. (36a-d) 

The equation for the thermal boundary layer thus 
becomes 

O+” = --&VI+ for Pr, = co. (37) 

It is seen that the assumption of infinite Prandtl 
number leads to two significant simplifications: (1) a 
simpler boundary condition for the melt layer; and 
(2) a simpler differential equation for the external 
thermal boundary layer. 

wG”’ 

The limit S -+ 0 

It is interesting to recall that for single-phase ther- 
mal boundary layers, whether forced or free conven- 
tion, the infinite Prandtl number assumption incurs 
very little error for most liquids and only about a 20% 
error even for gases with Pr N 0.7. Thus the simpler 
equations are expected to retain the essential physics 
of the problem and be quantitatively meaningful as 
. . . . ..I 

We note that equation (20) and (21) can 
nificantly simplified if S/Pr, and S are small : 

Equation (31) serves as one of the boundary con- 
ditions of the melt layer momentum equations. With 
,f*“(O) = O(I), it is clear that 

m4 -+ 0 +O. 02) 

We may also rescale the external energy equation 
using stretched variables based on the following ex- 
ternal thermal scale 

fc+l=O for SjPr,=O (33) 

s; = 0 for S= 0. (39) 

be sig- 

These two assumptions are related to the neglect of 
inertia and specific heat, respectively, for the melt 
layer. Similar assumptions were adopted by Nusselt 
[3] in his original analysis of film-wise condensation. 
As shown by perturbation analysis [4] and numerical 
film-layer computations [S], the parameters S and 
SjPr are usually quite small and their neglect does not 
significantly alter either the qualitative or quantitative 
aspects of the condensation problem. The magnitudes 
of these parameters are similarly small in the present 
problem-typically fess than 0. l-and their neglect is 
hence justified as a first approximation. 
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4. SOLUTION 

The solution of equation (39) subject to the bound- 

ary conditions, (25a) and (27b), is 

&l = (i/T)?. (40) 

Equation (25b) can now be written as 

fm(0) = -; ;. (41) 

With equations (25c), (32) and (41) as boundary 
conditions, the solution of (38) is 

The dimensionless melt-layer thickness z can be 
solved in terms of the fractional thermal resistance c 
from equation (26~) : 

z = (4[)“4. (43) 

This now permits the evaluation of interfacial tan- 
gential velocity 5 =f’(z) from equation (42) and (43) 
as 

5 = <I’?. (44) 

Note that the solution for equation (37) with 
boundary conditions, equation (35), can be obtained 
by straightforward procedures to yield 

31’2 
O+(q+) = erf- + 8l/?q (45) 

whence 

Q+‘(O) = (3/2n)“‘. (46) 

Making use of equations (33a, c) and (44), the tem- 
perature gradient at the interface is found to be 

e;(z) = (3/2n)‘12( 1 - ~)[[“?(~,/u,)S]“?. (47) 

The melt side temperature gradient can be evaluated 
from equations (40) and (43) as 

The jump condition, equation (26b), thus leads to 
an equation for /=Y 

c/(1 -{)‘= A (49) 

where 

A = %-va s 
?rk,p,c,’ 

Equation (49) is in a convenient form when A is small. 
If A is large, a more convenient form can be obtained 
by solving equation (49) algebraically : 

, Ii? 
i=1+&- &+z . 

( > 
(51) 

Making use of equations (40) and (41), expressions 

for the melting rate or the heat transfer coefficient 
based on the temperature difference AT = T,, - T,,,, 
can be obtained. Specially, the local Nusselt number 
at a distance x from the leading edge is 

xh 

Nux = k, = k,(Ta:- T,,,,) 

= l,(2’“)(;$gr4[3/4. (52) 

The mean Nusselt number for a surface of total 
length Z, is 

KL = 2(21/2),3&g g)i,ri314. (53) 

The melting rate V is related to the heat transfer 

rate q by the relationship 

v=Y. 
PSI 

5. EXPERIMENTAL COMPARISONS 

As a semi-quantitative check of the basic premises 

of the above theory for immiscible liquids, the melting 
rate of a vertical paraffin cylinder immersed in a hot 

aqueous solution of potassium iodide was measured. 
The cylinder had an initial diameter of 94.4 mm and a 
temperature of 24’C. The temperature of the solution 
was 62’.‘C. The melting point of the paraffin was about 
54’C. The specific gravities of the solution and the 
molten paraffin were 1.087 and 0.810, respectively. 
After a 19.5-min immersion, the cylinder was removed 
and the final dimensions measured with a caliper. The 
observed melting rate vs height is shown in Fig. 2. The 
data are compared with the theoretical melting rate 
predicted from equations (52X55), shown as the solid 
line. It is seen that there is good qualitative and semi- 
quantitative agreement. The melting rate decreased 

with height. indicating that the melt layer and the 
boundary layer flowed upward due to the upward 

“0 2 4 6 
Height, cm 

8 10 

FIG. 2. Melting of paraffin cylinder in a potassium iodide 
solution pa/p, = 1.34. 
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buoyancy force of the molten wax. The thermal buoy- 
ancy force of the ambient thermal boundary layer is 
directed downward. This could have accounted for 
the fact that the experimental melting rates were lower 
than those predicted from theory which neglected 
thermal buoyancy effects. It should also be noted that 
the physical properties of paraffin are strongly tem- 
perature dependent and not known with precision. 
A more quantitative comparison with the essentially 
zeroth-order theory is probably not justified. 

It is interesting to note that for the conditions 
employed, the predicted value of c was about 0.12. In 
other words, the dominant thermal resistance was the 
thermal boundary layer in the ambient fluid. In this 
light, the semi-quantitative agreement was quite 
remarkable because the theory attributed all of the 
buoyancy force to the melt layer which constituted 
only 12% of the heat transfer resistance. 

The melting rates of a material whose molten phase 

is soluble in the ambient fluid have been reported by 
Farhadieh and Zimmerman [6]. A rectangular block 
of polyethylene glycol, a water-soluble wax, was insu- 
lated on five sides. with one remaining vertical surface 
exposed to an aqueous solution of potassium iodide 
maintained by a thermostat-controlled heater at a 
temperature of 65°C. The initial temperature of the 
polyethylene glycol was 21-C and its melting point 
was 45°C. The melting of the solid was photo- 
graphically recorded and the melting rate was 
obtained by analyzing the photographs. The density 
of the potassium iodide solution could be altered by 

“,‘I 

I / 1 I I I I I I 
0.8 0.9 10 1.1 1.2 1.3 1.4 1.5 1.6 

Denstty Ratlo 

FIG. 3. Average melting rate of polyethylene glycol in hot 
aqueous solution of potassium iodide 
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changing the salinity. The observed mean melting rate 
as a function of the density difference is shown in Fig. 
3 compared to the theory. This rate represented the 
average for the entire vertical surface. Good quali- 
tative and semi-quantitative agreements were 
obtained. Again, in view of the imprecisely known 
properties of the materials involved, a more quan- 
titative comparison with the theory is not justified. 
The fact that experimental values appeared higher 
than the theoretical values could be due to the rela- 
tively strong convection currents generated by the 
heating wires immersed in the solution. 

6. CONCLUDING REMARKS 

The experiments cited above appear to corroborate 

the basic postulates of the present theory: (a) the 
dominant driving force in an immersion melting prob- 
lem is the buoyancy due to the melt-ambient fluid 
density difference instead of thermal buoyancy; and 
(b) the miscibility of the two fluids plays no major role 
in the basic processes. The theory, of course, was only 
a zeroth-order asymptotic theory. Theories account- 
ing for the higher order terms and more refined experi- 
ments are clearly desirable. 
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SUR LA CONVECTION NATURELLE ASSOCIEE A LA FUSION D’UN SOLIDE 
IMMERGE DANS UN FLUIDE CHAUD 

R&nn~n considere le champ d%couIement, le transfert thermique et la fusion associee d’un solide 
immergt dans un autre fluide chaud au repos. Le probl&me est un exemple intbressant de convection 
naturelle, different des problemes habituels en ceci que la force d’Archimkde dominante est due B la 
difference de densite du fluide de fusion plutBt qu’l la dilatation thermique. Une solution asyrnptotique 
est obtenue sous forme analytique pour le cas Iimite d’un effet d’Archim8de thermique nkgligeable, d’un 
melange ntgligeable entre le bain fondu et le fluide ambiant, d’un nombre de Prandtl ambiant &eve et d’un 
petit nombre de Stephan c, AT/I,. L-es parambtres nCglig&s sont montrbs dtre faibles pour les combinaisons 
de fluides miscibles avec de grands nombres de Lewis. On donne une comparaison qualitative et semi- 

quantitative avec des r&mltats exp&mentaux. 
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~SBER DIE KONVEKTION BEIM SCHMELZEN EINES FE~TSTOFFS IN EINEM 
HEISSEN ANDERSARTIGEN FLUID 

Zusammenfassung-Str6mungsbild, Wlrmeiibergang und die daraus resultierende Schmelzrate eines festen 
Kiirpers, der in ein sonst ruhendes, he&es Fluid getaucht ist, wurden untersucht. Dies ist ein interessantes 
Beispiel fur freie Konvektion, das sich von sonstigen Fallen dadurch unterscheidet, dal3 der Auftrieb nicht 
durch thermische Dichteunterschiede hervorgerufen wird, sondern durch den Dichteunterschied zwischen 
Fluid und Schmelze. Es wird eine asymptotische Nlherungslosung in analytischer Form angegeben fur 
den Grenzfall verschwindenden thermischen Auftriebs, vernachllssigbarer Vermischung von Schmelze und 
Fluid, grol3er Prandtl- und kleiner Stephan-Zahl cp. AT/,$ des Fluids. Es wird gezeigt, daB fur gebrauchliche 
Fluidkombinationen die vernachlassigten Parameter klein sind. Die Theorie lll3t sich such auf mischbare 
Fluide mit groger Lewis-Zahl anwenden. Ein qualitativer und teilweise quantitativer Vergleich mit MeOer- 

gebnissen wird durchgefiihrt. 

0 CBO6OflHOKOHBEKTMBHOM l-IJlABJIEHMM TBEPAOI-0 TEJIA, 
HOMEBLEHHOFO B FOPIlYYLO XKMflKOCTb CO CBOHCTBAMM, 

OTJlMYAK)lIH4MMC5l OT CBOtiCTB TBEPAOI-0 TEJTA 

Annoranm-PaccMarpusaercs none TeSeniis, rennonepeuoc u pe3ynb-rnpyroman cropoc-rb nnasnemis 
TBcpnOrO Tcna, nOrpy~eHHOr0 B HcnOJWDKHyIO rOpPIy,O XWLIKOCTb CO CBOikTBaMU,OTnAValOUAMHCII 

OT cB0ik~~ rena. 3anara sansercs unTepecnbrM npeMepoM c~o6onHol konsetouin, ne noxo*uM na 
06blWble 3aEl'lM n0 cBo6onHoti KOHBeKUAH, B KOTOpbIX npeo6nanammas IlOnbeMHaK Ckina BbI3BdHa 

pa3HOCTbH) nnOTHOCTeti KKHLIKOCTM A paCnnaBa, a He TennOBbIM ~CWlpcHHeM. ,&iMnTOTH'leCKOe 

pemewe nonyqeHo B aHamTwecKok @opMe nm npenenbnoro cnyqan npeue6pemaMo Manbtx senmmn 
nonbeMnoti cmbl 3a cqeT TennoBoro sc)u$eKTa, cMemeHm Mexny pacnnaeoh4 M orpyxaroureii win.- 

KOCTbIO. 6oabmoro Wcna npaHnTnK OKpymaKWeii XWLIKOCTH A Manor0 'IHCJIa CTcI$aHa c,AT/I,. 
IloKasatio. qT0 npeHe6peraeMble napabierpbt Manbt nns rnnmmbrx caryauufi. Teopes -ratc*e npsh4e- 
HWMa K CMeUlt(BaHJUlMMCII THL,KOCTIlM C 60nbUIrlMki WiCnaMW flbKWiCa.&HO KaVeCTBcHHOe M KO,TU'(eCT- 


